

Errata zum Buch "Analysis", 2. Auflage. Errata zu den Lösungen ab Seite 3.

Stand June 18, 2025

Seite	Zeile	Falsch	Richtig
27	10 v.o.	k(2) < k(2)	k(2) < k(3)
28	12 v.u.	$a+c \le a+c$	$a+c \le b+c$
30	10 v.u.	Analog zeigt man, dass	·
		$c < a_n + b_n$ für fast alle n	
34	5 und 6 v.o	10^{-n-1}	10^{-n}
66	16 v.o.	Flächeinhalt	Flächeninhalt
71	14 v.u.	$\in (a,b)$:	$\in \mathbb{R}^2 \colon x \in (a, b) \text{ und}$
72	13 v.o.	U_k	$U^{(k)}$
72	8 v.u.	$\{\lambda x, \mu y\} \colon (x, y) \in U$	$\{(\lambda x, \mu y) \colon (x, y) \in U\}$
72	8 v.u.	$ \lambda\mu \mu(V)$	$ \lambda\mu \mu(U)$
74	2 v.o.	$(\lceil b_1 \rceil_k$	$4^k(\lceil b_1 \rceil_k$
74		Beweis von 3.5 ersetzen.	Siehe Ende der Errataliste.
76	9 v.o.	Für	Einfachheitshalber sei $\mu(U \cup V) < \infty$. Für
81	7 v.o.	w[2]	w[0]
89	8 v.u.	$\left(\frac{p}{3}\right)^2$	$\left(\frac{p}{3}\right)^3$
108	9 v.u.	$x \in$	$\xi \in$
112	2 v.u.	ungerade	gerade
130	12 v.u.	$-x^2 + x - 2$	$-x^2 + x + 2$
134	10 v.o.	[a,b)	$[a,b) \to \mathbb{R}$
134	13 v.o.	t-1/k	b-1/k
136	1 v.u.	$x = t^2$	$t = x^2$
137	1 und 8 v.u.	$\lim_{n \to \infty} \int_a^b f(x) \mathrm{d}x$	$\int_{a}^{b} f(x) \mathrm{d}x$
138	9 v.o.	$-\frac{1}{12}f''(\xi)$	$-\frac{1}{12}f''(\xi)\cdot(b-a)^3$
164	4 v.o	$-\frac{1}{12}f''(\xi)$ $\sum_{n=0}^{\infty}a_nx^n$	(a_nx^n)
187	9 v.u.	$d_3 + d_1$	$d_3 - d_1$
187	8 v.u.	$d_3 - d_0$	$d_3 - d_1$
224	12 v.u.	$R_n(x)$	$R_m(x)$
228	9 v.o.	$\int fa$	f(a)
242	7 v.u.	$\frac{g(x) - g(a)}{x - a} = \frac{-1}{D_u F(p)} D_x F(p)$	$g(x) = g(a) + \frac{-1}{D_y F(p)} D_x F(p) \cdot (x - a)$
244	17 v.o.	$1, \dots m$	$1,\ldots,m$

Seite	Zeile	Falsch	Richtig
248	17 v.o.	$\left(\text{ Id } \middle D_x g(x) \right)$	$\left(\frac{\mathrm{Id}}{g'(x)}\right)$
260	18 v.o.	$\lambda_n a_n$	$\lambda_n a_n$)
260	5 v.u.	$(f(a) - \varepsilon, f(a) - \varepsilon)$	$(f(a) - \varepsilon, f(a) + \varepsilon)$
264	1 v.u.	$\mu_n(U)$	$\mu_{n+p}(U)$
269	6. v.u	\int	\int_{D}
270	7 v.u.	$x^3y + y^3$	$x^3y + y^3x$
278	5 v.o.	$\varphi_1'(t), \ldots, \varphi_k'(t)$	$D_1\varphi(t),\ldots,D_k\varphi(t)$
291	4 und 5 v.u.	(k,∞)	$(\mathbb{R}^n \times (k, \infty))$
205	9 v.u.	$\int f_n$	f_k
296	5 v.o.	$\sum_{i=1}^{n}$	$\sum_{i=1}^{s}$
311	6 v.o	$x_0(t,\xi)$	$x_1(t,\xi)$
316	9 v.o.	e^a	e^{at}
318	4.v.u	$\left(\begin{array}{c} x'(t) \\ y(t) \end{array}\right) = A \cdot \left(\begin{array}{c} x'(t) \\ y(t) \end{array}\right)$	$\left(\begin{array}{c} x'(t) \\ y'(t) \end{array}\right) = A \cdot \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)$
326	3 v.u.	t-b	$b-t_0$
338	7 v.o.	\mathbb{R}^n	\mathbb{R}
349	4 v.o. und 8 v.u.	$I \cup \mathbb{P}$	I
349	10 v.o.	$(z-p_3)^2)$	$(z-p_3)^2$
352	4 v.o	A	\overline{A}
361	Im Bild	f0	$\nabla f_1(p)$
361	Im Bild	f1	$\nabla f_0(p)$
361	Im Bild	dM	∂M

Beweis von 3.5

Angenommen die Aussage ist falsch. Für jedes $\ell \geq k$ existiert ein $Q_{\ell} \in U^{(\ell)}$ mit $Q_{\ell} \not\subset U_i$ für jedes $i \in I$. Sei $Q_{\ell} = [a_{\ell}, a_{\ell} + 2^{-\ell}] \times [b_{\ell}, b_{\ell} + 2^{-\ell}]$. Nach dem Satz von Bolzano-Weierstraß hat (a_{ℓ}) eine konvergente Teilfolge $(a_{\ell(j)})$ mit Grenzwert a und wiederum nach Bolzano-Weierstraß hat $(b_{\ell(j)})$ eine konvergente Teilfolge $(b_{\ell(j(i))})$ mit Grenzwert b. Sei p = (a, b). Weil $p \in Q \subset \cup_{i \in I} U_i$, gibt es ein $i \in I$ mit $p \in U_i$. U_i ist eine offene Menge, deshalb gibt es ein offenes Rechteck $R = (c_1, c_2) \times (d_1, d_2)$ mit $p \in R \subset U_i$. Weil $(a_{\ell(j(i))})$ und $(b_{\ell(j(i))})$ gegen a bzw. b konvergieren, gibt es ein $N = \ell(j(i))$ mit $c_1 < a_N < a_N + 2^{-N} < c_2$ und $d_1 < b_N < b_N + 2^{-N} < d_2$. Aber dann ist $Q_N \subset R \subset U_i$, Widerspruch zur Wahl von Q_N !

Aufgabe 4.7. Die letzte Zeile ersetzen durch

$$\left(\frac{f(x)}{g(x)}\right)' = f'(x) \cdot \frac{1}{g(x)} + f(x) \left(\frac{1}{g(x)}\right)' = f'(x) \frac{1}{g(x)} - \frac{f(x)g'(x)}{g^2(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

Aufgabe 4.30, 3. Teil.

Es reicht zu zeigen, dass $\ln(1-x/t)^t = t\ln(1-x/t) = h(t)$ eine wachsende Funktion von t ist.

$$h'(t) = \ln(1 - x/t) + \frac{t}{1 - x/t} \cdot \frac{x}{t^2} = -\ln\left(\frac{t}{x - t}\right) + \frac{x}{t - x}.$$

Es gilt $\ln(y) - y + 1 > 0$ (Das Maximum ist gleich 0 für y = 1). Somit ist h'(t) > 0 und h ist wachsend.

Aufgabe 6.40, 3. Teil. Ersetzte $(1-x^2)^{1/2}$ durch $(1-x^2)^{-1/2}$. Aufgabe 11.19, nr. 2. Richtige Berechnung des Integrals:

$$\int_{U} u^{2} v e^{v^{2}} d(u, v) = \left(\frac{u^{3}}{3}\Big|_{0}^{2} \cdot \frac{1}{2} \left(e^{v^{2}}\Big|_{0}^{2} = \frac{4}{3} \left(e^{4} - 1\right).\right)$$